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Rhodium-catalyzed linear codimerization of 1,3-butadiene and
ethylene is an industrially important process for the synthesis of
hexadienes.* Related iron® and cobalt® catalyzed heterodimerizations
of substituted 1,3-butadienes and a-olefins have seen a resurgence
of activity recently.* Impressive advances in Fe- and Co-mediated
polymerization reactions of alkenes have also been made.®> However,
surprisingly little attention has been paid to the Co-catalyzed
codimerization of ethylene with other alkenes in which chiral
branched products are formed. Only reported examples pertain to
the high-pressure Fe(0)-catalyzed heterodimerization of ethylene
(hydrovinylation) with (E)-1,3-pentadiene (37% e€) and 2-methyl-
1,3-pentadiene (31% ee)*® and a recently reported Co-catalyzed
(also high pressure) hydrovinylation of styrene (50% e€).® Both
Ru-" and Ni-catalyzed®~*° hydrovinylation reactions of 1,3-dienes
have been reported, even though high enantioselectivity has been
realized only for very limited substrates.>*° Conspicuously absent
among these reports are synthetically useful asymmetric hydro-
vinylation reactions of unactivated linear 1,3-dienes, a class of
readily available substrates for which few asymmetric catalyzed
C—C bond-forming reactions are known.*°** |n this Communica-
tion we report our initial studies on the ligand effects on the Co(ll)-
catalyzed hydrovinylations of such 1,3-dienes which culminated
in the discovery of a surprisingly simple method*>*® for an
asymmetric variation of this reaction at ambient pressure of
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Our studies started with an examination of the codimerization
of ethylene and (E)-1,3-nonadiene (eq 1, 1a, R = CsHy;) with
isolated complexes L ,CoX; (L = mono and bis-phosphines; X =
halogen) as catalysts in the presence of Lewis acids such as
aluminum alkyls as promoters.’® Initial scouting experiments
revealed that CoCl, complexes with a,w-bis-diphenylphosphino-
akanes [Ph,P (CH,),PPhy; n = 1—4] in the presence of MesAl
(Co:Al = 1:3) in a mixture of CH,CI, and toluene (4:1) had the
most potential as catalysts for this reaction.’® In view of the previous
report that MesAl was ineffective in the hydrovinylation of styrene,®
we were surprised to find that under the optimal reaction conditions
excellent yield and selectivity in the hydrovinylation of 1a and a
number of other substrates can be realized as shown in Tables 1
and 2. Thus l1a undergoes hydrovinylation promoted by (dppb)-
CoCl; (dppb = 1,4-bis-diphenylphosphinobutane) and MesAl for
93% yield of a1,4-addition product 2a (R = CsHyy, Z-isomer) (entry
1). Under these conditions no trace of a 1,2-adduct 4a or any linear
dimerization product 5a was formed as ascertained by NMR and
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Table 1. Co-Catalyzed Hydrovinylation of 1a (R = CsHj;)?

product, yield (%)°

2a 3a 4a 5a
no. P~P T,°C (1,4-2) (1,4-E) (1,2-E) (1,4-linear)
1 dppb —10 93 7 0 0
2 dppm -20 <2 30 67 <2
3° dppe -10 70 0 0 10
4° dppp -20 75 0 0 14
5° dppp 23 0 26 65 <4

6 2P —10 — - — -

3See eq 1 and Supporting Information for details. ® Estimated by GC
and NMR. € In addition to the products the rest is starting material.

gas chromatography.™® The only contaminant (~7%) has been
identified as the (E)-1,4-adduct, 3a (R = CsHy;). The product
distribution is highly dependent on the bis-phosphine employed and
the reaction conditions, especialy the temperature. As shown in
entry 2 (Table 1), (dppm)CoCl, (dppm = bis-diphenylphosphi-
nomethane) at —20 °C gives mostly amixture of the (E)-1,4-adduct
3a (30%) and a 1,2-adduct 4a (67%). Under these conditions,
(dppe)CoCl, (dppe = 1,2-bis-diphenylphosphinoethane) and (dp-
pp)CoCl, (dppp = 1,3-bis-diphenylphosphinopropane) give the (2)-
1,4-adduct 2a as the major product in 70% and 75% vyields,
contaminated with what appears to be a linear dimer 5a (entries 3
and 4). At room temperature (dppp).CoCl, gives very little of 2a;
instead a mixture of 3a [(E)-1,4-prdduct] and 4a [(E)-1,2-adduct]
was formed (entry 5), suggesting that 2a might be a kinetic product.
Similar reaction conditions using (PhsP),CoCl, as the catalyst led
to polymerization of the diene (entry 6).

Table 2. Hydrovinylation of 1,3-Dienes: Scope of Substrates®

product, yield®
no. alkene/R in 1 P~P 2 3 4 5
1 CsHy; (1a) dppb 93 (>93) 7 0 0
2 CsHis (1b) dppb 95 (>99) 0 0 <2
3 C;His (1c) dppb 95 (>99) 0 0 <2
4 CgHy7 (1d) dppb 95 (>99) <1 0 0
5  CHs;(le) dppb (>95)° (<5) - 0
6  BnOCH,CH, (1f)  dppb 78° 0 0o o0
7 p-myrcene (6) dppb 0 0 0 —f

aSee eq 1 and Supporting Information for details. ° Isolated yield (in
brackets are yields estimated by GC and NMR). ¢Volatile products.
dSame as 3. ©At 0 °C. "Only 1,4-linear product (7) is formed in 78%
yield. 7: [(2)-2-methyl-6-(3-propenyl)-octa-2,6-diene].

The optimized reaction conditions using (dppb)CoCl, have broad
applicability as shown in Table 2 and eq 2. Terminally substituted
E-1,3-dienes (entries 1—5, Table 2) including (E)-1,3-pentadiene
are excellent substrates for the Co-mediated hydrovinylations giving
amost exclusively the (2)-1,4-adducts (2) in yields exceeding 90%.
A minor product in these reactions has been tentatively identified
as the geometrical isomer 3 or alinear HV adduct 5.*2 The former
is easily identified by the presence of a quintet around ~¢ 2.61,
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and the latter by a broad triplet at ~6 2.80. The reaction is
compatible with functionalized dienes such as the benzyl ether 1f
and a 1,3-diene carrying a remote trisubstituted double bond (-
myrcene, 6), which is not affected by the hydrovinylation of the
terminal 1,3-diene functionality (entry 7).

pan R

— [L]JCoCl,, MejAl (Co:Al 1:3)
— ethylene (1 atm)

Ph
R o CH,Cl, (1:4), -10°C
8 (R=H) 9(R=H) 10(R=H)
11 (R = Me) 12(R=Me) 13 (R=Me)
8 (R=H) 11 (R = Me)
L 9 10 L 12 13

dppm  g32 0 dppm 99 (92) 0

dppp 0 99 (93) dppp  62° 0

dppb 0 71ab dopb 0O 0

a_20°C, P rest sm b rest sm

Hydrovinylation of 1-aryl-substituted 1,3-butadienes behaves
differently and parallels the trend recently seen in the dimerization
of such dienes with terminal alkenes.* (E)-1-Phenyl-1,3-butadiene
(8), a substrate that underwent facile Ni(ll)-catalyzed hydrovinyl-
ation to give a 1,2-adduct (9) exclusively,’®® gives a linear 1,4-
adduct 10 with both (dppp).CoCl, and (dppb).CoCl, (eq 2). In sharp
contrast, the corresponding dppm complex gives 9 as the major
HV product. (E)-2-Methyl-1-phenyl-1,3-butadiene (11) gives only
a branched product (12) arising from a 1,2-addition at the less
substituted double bond, irrespective of the Co complex used, even
though it appears that ligands with larger bite angles retard the
reaction.

>< \Cpph PPh2 §PPh2
PPh, Pth PPh,

14 (RR)-DIOP  ent-14 (SS)-DIOP 15 (SS)-BDPP

Having realized synthetically useful chemo-, regio-, and dia-
stereoselectivity in the hydrovinylations of ssmple 1,3-dienes using
dppp and dppb, we turned our attention to the asymmetric reaction.
Among the limited set of ligands that were explored,™* (RR)-(2,2-
dimethyl-1,3-dioxalane-4,5-diyl bismethylene)-bis-diphenyl phos-
phine [(RR)-DIOP, 14] and (SS)-2,4-bis-diphenylphosphinopentane
[(S9-BDPP, 15], simplest chira analogues of dppb and dppp that
are commercially available, gave the best results (Table 3).

Under the optimized conditions (E)-1,3-nonadiene (1a) gave (9-
(2)-4-vinylnon-2-ene (95% ee) in nearly quantitative yield upon
reaction with [(RR)-DIOP]CoCl, and Me;Al (Table 3, entry 1). At
—45 °C where these reactions are carried out <2% of isomeric
products are observed. The identities of the hydrovinylation products
were rigorously established by spectroscopic methods and, in the
case of 2e, by comparison of observed? and reported™® properties.

The reaction appears to be quite general for dienes (entries 1—8)
including (E)-1,3-pentadiene. Substrates with functional groups such
as a benzyl ether 1f (entries 9, 10) are tolerated in these highly
enantiosel ective reactions. Not unexpectedly, substrate 1f carrying
a Lewis basic oxygen reacts sluggishly. Finally, a diene with aryl
conjugation (e. g., 11) gave essentially a racemic product (entry
12).%6

The mechanism of the MesAl-mediated hydrovinylation is
currently under investigation. It is conceivable that, under the
nonreducing conditions® used here (vis-&vis the Hilt procedures™ ¢
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Table 3. Co-Catalyzed Asymmetric Hydrovinylation of 1,3-Dienes®

product
yield Y%ee
no. diene/R in 1 P~P (%)° (config.)®
1 CsHy; (1) (RR)-DIOP >99 (95) 95.0 (9
2 CsHy; (18) (SS-DIOP >99 (96) 93.3(R)
3 CsHy; (18) (S5-BDPP >99 (96) 97.1(R)
4 CeHas (1b) (RR)-DIOP >99 (96) 95.3(9
5 C/Hss (1¢) (RR)-DIOP >99 (98) 95.4 (9
6 CgHi7 (1d) (RR)-DIOP >99 (95) 96.1(9
7 CHs (1e) (RR)-DIOP >90¢ 90.1 (S
8 CH; (1e) (S9-DIOP >90¢ 89.1(R)
9 BnOCH,CH, (1f) (RR)-DIOP (40)¢ 99.0(9
10 BnOCH,CH, (1f) (S9-DIOP (40)° 96.0 (R)
12 alkene 11 (eq 2) (S9-BDPP >99 <5% (—)

2See eq 1. 0.05 of equiv of (P~P)CoCl,, Co:Al 1:3; ethylene (1
atm); solvent (CH.Clz:itol = 4:1); —45 °C; 6 h. P Determined by GC;
isolated yield in brackets. © Configuration of 2e assigned by comparison
of optical rotation and relative retention times on a S-cyclodex chiral
stationary phase GC column.*2?° Others (all of same sense of [a]p)
assigned by analogy; see Supporting Information for details. 9 Volatile
products. ¢ Reaction done at —20 °C, rest starting materials.

which employ a Co(ll) salt with a reducing agent in the presence
of aLewis acid), a[(L)Co(Il)—H]* (16) is the catalytic species.*”
This species could be formed by metathesis of the AlI—Me/Co—Cl
bonds and migratory insertion of an alkene into Co—Me bond,
followed by reductive elimination (Scheme 1). Addition of the
Co—H via an n*diene complex 17 would produce a syn-anti-
(alyl)Co-species 18 which would undergo coupling with ethylene
to give 20. Reductive elimination from 20 regenerates the catalyst
giving the major product 2.*® Intermediacy of the #-allylic
intermediate (18), which is capable of syn/anti isomerization,*®
would also explain the temperature dependence of the product
distribution (entries 4 and 5 in Table 1). Note that none of the
product 2a, which is the major component at —20 °C formed from
the syn-anti-allyl intermediate 18, is observed at 23 °C (entry 5).
At low temperature where the asymmetric catalyzed reactions are
carried out, 18 must be configurationally stable to give the high
selectivities observed. Consistent with the intermediacy of an 7*-
diene complex 17, in preliminary studies with a mixture of (E)-

Scheme 1. A Possible Mechanism of Co(ll)-Catalyzed
Hydrovinylation of 1,3-Dienes
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and (2)-penta-1,3-diene, we have observed that the Z-isomer, which
is expected to form this species dower, indeed turns over at aslower
rate.*?

As a prelude to further studies we have obtained solid state
structures of the complexes (RR)-[DIOP]CoCl, and (SS)-[BDPP]-
CoCl,, which are shown in Figure 1. These tetrahedral complexes
with the bidentate ligands appear to overcome one of the serious
limitations of catalysis by Ni(Il) complexes, where only monoden-
tate ligands have been successful .2° Cobalt with the possibility of
higher coordination numbers can support more flexible geometries
for the intermediates in the catalytic cycle.

co2alD casa

Figure 1. Solid-state structures of precatalysts (RR)-[DIOP]CoCl, and (S9-
[BDPP]CoCl,.

Further studies to expand the scope of the reaction and to clarify
its mechanism are currently underway.
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